Statistics

There is a package Parallel detectCores(): return how many cores exist on your PC. cl <- makeCluster(np): initialize a cluster mc with np processes. Apply Operations using Clusters: clusterCall, clusterEvalQ, clusterApply, clusterExport, clusterMap, parLapply, parSapply, parApply, parRapply, parCapply stopCluster(cl): release the occupied cores. An example Check how many cores exist on my PC. library(parallel) detectCores() ## [1] 12 Define a function. sim <- function(x){ rnorm(1, mean = x) } Use parallel to speed up the calculation.
2022-01-08
1 min read
Steps for \(i=1,2,\dots,n\) Sample candidate value \(x^i\) from a proposal distribution \(q(x^i|x^{i-1})\) Compute acceptance probability: \[\alpha=\frac{p(x^i)q(x^{i-1}|x^i)}{p(x^{i-1})q(x^i|x^{i-1})}\] 3. Compute \(r=min(1,\alpha)\) Sample \(U\sim Unif(0,1)\) \[ x^i=\begin{cases} x^{i-1}, &u<r \\x^i, &u\geq r\end{cases} \] An example
2022-01-07
1 min read
R code for bootstrap and permutation test.
2021-04-17
1 min read